A Finite Element Approach to the Prediction of Sound Transmission through Panels with Acoustic Resonators

نویسنده

  • M.H.C. Hannink
چکیده

Previous research by the authors has shown that sound radiated by a vibrating panel can be reduced considerably by using tuned acoustic resonators. The length of the tube resonators determines the frequency range in which sound is reduced. The shape of the spectrum is determined by the ratio of the cross-sectional areas of the resonators to the area of the panel. Maximum sound reduction is achieved if the volume velocities at the surface of the vibrating panel and those at the entrance of the resonators are equal in magnitude but opposite in phase. Up to now, the effect of the resonators on the radiated sound has been studied with a one-dimensional analytical model. In this paper, a three-dimensional acousto-elastic model is developed using the finite element method. The purpose of this model is to study the influence of the flexibility and the boundaries of the panel, as well as the presence of rooms behind and in front of the panel on the sound transmission. Modelling the complete structure, including the resonators and the interaction with the air inside the resonators, is computationally expensive. Therefore, an alternative approach is developed. Because of the repetitive pattern of resonators in the panel, the structural part of the panel is modelled with superelements. To enable coupling between the structural part of the model and the air behind and in front of the panel, a new interface element is derived. The formulation of this interface element also includes the acoustic behaviour of the resonators. Sound transmission loss calculations are made for one configuration and the results are compared with the results obtained with a one-dimensional analytical model. INTRODUCTION Previously, the effect of tube resonators on the sound radiated by a vibrating panel was studied with a one-dimensional analytical model [2]. It was shown that the radiated sound can be M.H.C. Hannink, R.M.E.J. Spiering, Y.H. Wijnant and A. de Boer reduced considerably by tuning the length and the radius of these resonators. In this paper, an acousto-elastic model, based on the finite element method (FEM), is developed to study the effect in a three-dimensional setup. The model can be used to calculate the sound transmission loss of panels with resonators for different geometries and boundary conditions. Figure 1 shows a resonator panel for the situation studied in this paper. At the incident side, the panel is acoustically excited by applying a harmonic pressure perturbation on the panel. The sound is transmitted into a room with sound absorbing walls. Using a fully coupled FEM model of the complete structure, the air inside the resonators, and the room, is computationally expensive. Therefore, an alternative approach is developed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

25th INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES IMPROVEMENT OF THE SOUND TRANSMISSION LOSS OF PANELS BY MEANS OF ACOUSTICALLY TUNED RESONATORS

When a panel is excited, either structurally or acoustically, sound is radiated from the panel. Previous research by the author has shown that tuned acoustic tube resonators can be used to reduce the radiated sound. A one-dimensional analytical model model was validated by experiments in an impedance tube and good agreement was found between model and measurements. In this paper, the model is e...

متن کامل

Prediction of radiation ratio and sound transmission of complex extruded panel using wavenumber domain finite element and boundary element methods

Recently, complex shaped aluminium panels have been adopted in many structures to make them lighter and stronger. The vibro-acoustic behaviour of these complex panels has been of interest for many years but conventional finite element and boundary element methods are not efficient to predict their performance at higher frequencies. Where the cross-sectional properties of the panels are constant...

متن کامل

Prediction of Noise Transmission Loss and Acoustic Comfort Assessment of a Ventilated Window using Statistical Energy Analysis

In this paper, a novel analytical method was developed based on statistical energy analysis framework to evaluate sound transmission loss through ventilated windows. The proposed method was compared to numerical and analytical models available in the literature. Results showed the success and advantage of the proposed model in predicting the acoustic performance of the ventilated window and the...

متن کامل

Opto-acoustical filter based on phoxonic crystal ring resonator

In this paper, a phoxonic crystal structure is designed that shows a complete phononic and photonic ban gap and is capable to guide the optical waves with transverse magnetic polarization and acoustic waves. The materials used in the structure are nylon and molybdenum, which have suitable refractive index and elastic constant. Also, it is worth of noting that the filling factor is 28% for the p...

متن کامل

Simulation and Experimental Study of Vibration and Noise of Pure Electric Bus Transmission based on Finite Element and Boundary Element Methods

Since the electric motor of pure electric vehicle replaced the engine, the "masking effect" disappears, and the problem of vibration and noise of the transmission becomes prominent. This is generated during the gear meshing and is transmitted to the housing through the shaft and bearing. Thereby, radiation noise of the housing are generated. The prediction and analysis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006